Data fusion based framework for the recognition of Isolated Handwritten Kannada Numerals
نویسنده
چکیده
combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification task, an increase in data size, number of classes, dimension of the feature space and interclass separability affect the performance of any classifier. It is essential to know the effect of the training dataset size on the recognition performance of a feature extraction method and classifier. In this paper, an attempt is made to measure the performance of the classifier by testing the classifier with two different datasets of different sizes. In practical classification applications, if the number of classes and multiple feature sets for pattern samples are given, a desirable recognition performance can be achieved by data fusion. In this paper, we have proposed a framework based on the combined concepts of decision fusion and feature fusion for the isolated handwritten Kannada numerals classification. The proposed method improves the classification result. From the experimental results it is seen that there is an increase of 13.95% in the recognition accuracy. Keywords—feature selection; feature fusion; decision fusion; Curvelet transform; K-NN classifier; data fusion; isolated handwritten Kannada numerals; OCR;
منابع مشابه
Recognition of Isolated Handwritten Kannada Numerals based on Decision Fusion Approach
combining classifiers appears as a natural step forward when a critical mass of knowledge of single classifier models has been accumulated. Although there are many unanswered questions about matching classifiers to real-life problems, combining classifiers is rapidly growing and enjoying a lot of attention from pattern recognition and machine learning communities. For any pattern classification...
متن کاملClassifier Fusion Method to Recognize Handwritten Kannada Numerals
Optical Character Recognition (OCR) is one of the important fields in image processing and pattern recognition domain. Handwritten character recognition has always been a challenging task. Only a little work can be traced towards the recognition of handwritten characters for the south Indian languages. Kannada is one such south Indian language which is also one of the official language of India...
متن کاملOffline Handwritten Kannada Numerals Recognition
Handwritten Character Recognition (HCR) is one of the essential aspect in academic and production fields. The recognition system can be either online or offline. There is a large scope for character recognition on hand written papers. India is a multilingual and multi script country, where eighteen official scripts are accepted and have over hundred regional languages. Recognition of unconstrai...
متن کاملNeural Network based Kannada Numerals Recognition System
This paper presents a novel approach for feature extraction in spatial domain to recognize segmented (isolated) Kannada numerals using artificial neural networks. Artificial neural systems represent the promising new generation of information processing networks to develop intelligent machines which can be used as classifier. The ability of neural networks to learn by ordinary experience, as we...
متن کاملA Standardized Frame work for Handwritten and Printed Kannada Numeral Recognition and Translation using Probabilistic Neural Networks
Numeral recognition is considered to be very prominent in most of the Character recognition researches. With respect to applications like number plate recognition and document processing the numerals are composed as a part of number plate images/application form type document images. This paper mainly focuses on eliminating language barriers that may arise while comprehending the regional langu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013